10 октября, четверг |
ПОЛИТИКА | ЭКОНОМИКА | ОБЩЕСТВО | ПРОИСШЕСТВИЯ | КУЛЬТУРА | СПОРТ | МЕДИА | В МИРЕ | АВТО | ТЕХНОЛОГИИ |
Фоторепортажи | Видеосюжеты | Комментарии | Погода | Работа | Форум | Карта | Подписка и RSS | Реклама| О газете |
Автомобили учатся читать31 декабря 2008, среда, 16:45 – БРЯНСК.RU | Комментарии: 0
| Версия для печати Иногда может показаться, что автопроизводители поставили своей цель опекать водителей как неразумных детей, неспособных контролировать не только автомобиль, но и самих себя. И отчасти они правы.Бесстрастная статистика свидетельствует, что ежегодно на планете в ДТП гибнут 1,2 миллиона человек и 50 миллионов получают травмы. За первые полгода 2007 в одной России на дорогах погибли около 16 тысяч человек. В большинстве случаев причиной аварии становится элементарное несоблюдение правил дорожного движения. Именно поэтому автомобили оснащают системами, позволяющими следить за положением дорожной разметки, автоматически держать дистанцию до впереди идущего транспорта, тормозить при возникновении препятствий или объезжать их. Как ни парадоксально, но создание автомобиля, которому в принципе не нужен водитель, лишь вопрос времени. Одним из сдерживающих факторов на этом пути стало отсутствие надежной системы распознавания дорожных знаков. Представьте себе, что видеокамера и компьютер, установленные в автомобиле, смогут находить и обрабатывать информацию, помещенную на этих знаках. Интеграция этой технологии в систему управления транспортным средством позволит пополнить уже существующий комплекс устройств активной безопасности. Электроника будет выступать в роли милиционера с палочкой, предупреждая водителя о нарушениях правил дорожного движения и пресекая его попытки "пошалить" еще раз. Созданием систем распознавания дорожных знаков (Road Sign Recognition – RSR) занимаются практически все крупные автопроизводители совместно с научно-исследовательскими центрами, работающими в области кибернетики и робототехники. Собственно, системы, способные "прочесть" знаки, существуют уже сейчас. Но остается главная проблема – определение области знака в поле зрения системы, т. е. поиск предмета, похожего на дорожный знак, его идентификация в этом качестве и понимание информации, которую несет данный знак. Разработан ряд алгоритмов, позволяющих компьютеру выделить стандартный дорожный указатель из общего фона на основании определенного набора цветов и форм, характерных для того или иного дорожного знака. Прежде всего, система должна принять во внимание время суток и уровень освещенности, так как в условиях недостаточной видимости или искусственного освещения меняется и цвет предметов, воспринимаемых сенсорами. Поэтому для определения истинного цвета системе нужно делать корректировку по цветам применительно к условиям нормального дневного освещения. Футуристическая система "машинного зрения" призвана распознавать нужные объекты невзирая на помехи, неизбежные во время интенсивного дорожного движения: безошибочно считывать дорожные знаки на разной скорости и различных дорожных покрытиях, несмотря на искажения изображений от вибраций, частичное перекрытие дорожных знаков другими автомобилями, пешеходами и т.п. Нужно учесть, что система может принять за знаки строения, рекламные щиты и другие предметы. Кроме того, и сами дорожные знаки часто бывают нестандартными и имеют сотни сходных версий. Поэтому аппаратные средства должны мгновенно обрабатывать огромный объем визуальной информации, чтобы заблаговременно предупреждать водителя. Такая система просто обязана быть достаточно "эрудированной" и назубок помнить множество дорожных знаков, чтобы проделать свою работу в режиме реального времени. Социализация машины требует загрузки огромных баз данных с изображениями, что само по себе является трудоемким и дорогостоящим процессом. В науке это называется статистическим подходом к обучению машины. Несмотря на теоретическую возможность создания систем распознавания, реализация алгоритма на практике составляет сложнейшую проблему для разработчиков программ. Главным требованием при проектировании подобных систем является обеспечение их стабильной работы и надежности: любая ошибка может стать фатальной. На данном этапе развития технологий распознавания дорожных знаков рано говорить о появлении серийной продукции. Сейчас на повестке дня проверка алгоритмов: сможет ли система "машинного зрения" правильно распознавать изображения в реальных условиях дорожного движения? Источник: Дни
|
ПОЛИТИКА | ЭКОНОМИКА | ОБЩЕСТВО | ПРОИСШЕСТВИЯ | КУЛЬТУРА | СПОРТ | МЕДИА | В МИРЕ | АВТО | ТЕХНОЛОГИИ |
Фоторепортажи | Видеосюжеты | Комментарии | Погода | Работа | Форум | Карта | Подписка и RSS | Реклама| О газете |
Размещение рекламы в газете БРЯНСК.RU: Прайс-лист, тел. (4832) 37-19-38, почта info@briansk.ru Для информационных писем в редакцию: news@briansk.ru | Архивы за 2024, 2021, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005 гг. | |||
2005–2015 © Ежедневная интернет-газета БРЯНСК.RU При цитировании активная ссылка на БРЯНСК.RU обязательна Материалы газеты могут содержать информацию 18+ | Открыв данный сайт, Вы соглашаетесь с Правилами cайта (договор-оферта). Если вы не согласны с Правилами, немедленно покиньте сайт! |